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ABSTRACT 
 

Rice blast caused by the fungal pathogen, Magnaporthe grisea (anamorph: Pyricularia grisea) limits rice yield in all 

major rice-growing regions of the world and the rice blast fungus, Magnaporthe oryzae, is responsible for the most 

serious disease of rice and is a continuing threat to ensuring global food security. The fungus has also, however, 

emerged as a model experimental organism for understanding plant infection processes by pathogenic fungi. This 

hemibiotrophic pathogen penetrates in epidermal cells and causes lesions on leaves, leaf collar, culm, culm nodes 

and panicle neck causing failure of seed filling. After successful penetration, the invasive hyphae grow rapidly in the 

host cells and caused blast lesions. in 5 to 7 days, the pathogen produces numerous conidia from the lesions and 

initiates a new infection cycle. A number of signal transduction pathways are implicated in appressorium-mediated 

plant infection and have been characterised as a potential means of developing new chemical intervention strategies 

for disease control. With the advent of new technologies like marker-assisted selection, molecular mapping, map-

based cloning, marker-assisted backcrossing and allele mining, breeders have identified more than 100 Pi loci and 

350 QTL in rice genome responsible for blast disease.   
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I. INTRODUCTION 

 

Magnoporthe oryzae Heb.(anamorph: Pyricularia 

oryzae Cav. Or Pyricularia grisea Sacc.) causes the rice 

blast disease (Wu et al., 2006). M. oryzae is a 

hemibiotrophic, ascomycetous fungus that has been 

reported to infect more than 50 grass species (Pennisi 

2010). Rice blast disease is one of the most devastating 

of all cereal diseases worldwide and causes harvest 

losses of 10–30 % of the global rice yield annually 

(Talbot 2003) and economic losses over $70 billion of 

dollar (Scheuermann 2012). M. oryzae is listed as 

number one of the ten most important fungal pathogens 

in molecular biology (Dean et al., 2012). In the first 

phase of infection, the conidia form an injection 

apparatus (appressorium), which penetrates the leaf 

cuticle (Wilson and Talbot 2009). Invasive hyphae then 

rapidly grow in the rice leaf and stem. The fungal 

biomass soon reaches over 30% and the rice plant 

succumbs to necrosis ( Wilson and Talbot 2009). This 

hemibiotrophic pathogen penetrates in epidermal cells 

and causes lesions on leaves, leaf collar, culm, culm 

nodes and panicle neck causing failure of seed filling. 

Blast-resistant rice cultivars (cvs) have normally a short 

field life due to the plasticity of the M. oryzae genome, 

that is able to evolve new race by mutation of the 

avirulence (Avr) genes, causing a breakdown of the 

deployed plant resistance conditioned by R genes (Dean 

et al., 2005; Valent and Khang 2010). Many studies 

indicated that the genetic control of blast resistance is 

complex and involves both major and minor resistance 

genes with complementary or additive effects, as well as 

environmental interactions (Wang et al., 1994; Wu et al., 

2005; Li et al., 2007, 2008a, b; He et al., 1989; Bonman 

1992). Thus, the discovery and use of novel R genes and 

development of broad-spectrum resistant varieties are 
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urgent goals in breeding for blast resistance in rice. 

Since the idea of indirect selection using genetic markers 

was first reported by Sax (Sax et al., 1923) over 80 years 

ago, and particularly in the last few decades, new 

technologies have emerged that allow breeders to more 

easily select changes at the DNA level. Much of the 

progress to date has centered on marker-assisted 

backcrossing or the pyramiding of genes against rice 

blast (Torres, 2010). Molecular markers are essential for 

mapping genes of interest, marker-assisted breeding, and 

cloning genes using mapping-based cloning strategies 

(Hayashi et al., 2004).  

 

II. METHODS AND MATERIAL 
 

A. Plant Penetration 

The heterothallic ascomycete Magnaporthe oryzae, is 

the most destructive disease of cultivated rice worldwide 

and can lead to severe losses of annual rice yield (Valent 

et al., 1991; Talbot, 2003). Under normal conditions, the 

fungus uses a highly specialized infection structure 

appressorium generated from a conidium for plant 

penetration (Howard et al., 1991; Jong et al., 1997). 

After successful penetration, the invasive hyphae grow 

rapidly in the host cells and caused blast lesions. In 5 to 

7 days, the pathogen produces numerous conidia from 

the lesions and initiates a new infection cycle. 

 

B. Regulation of gene expression at the level of 

transcription 

Regulation of gene expression at the level of 

transcription controls many crucial biological processes. 

A number of different factors, including transcription 

factors, are essential for the process of transcription. 

Transcription factors can recognize DNA in a sequence-

specific manner and modulate the frequency of initiation 

of transcription upon binding to specific sites in the 

promoter of target genes. The transcription factors can 

be activators, repressors, or both usually display a 

modular structure named the DNA-binding domain 

(Pabo and Sauer 1992). In M. oryzae, numerous 

transcription factors were identified and characterized to 

be important for proper regulation of infection related 

morphogenesis (Li and Xu, 2012; Kim et al., 2009). 

Many transcription factors, including MoCrz1, MoAp1, 

MoAtf1, MoHac1, MoBzip10, MoSwi6 and MoMsn2 

were reported to be involved in hyphal growth, asexual 

development, stress response, infectious growth and 

virulence by controlling the expression levels of a series 

of target genes (Zhang et al., 2009; Tang et al., 2014). 

C. Effect of azoxystrobin and kresoxim-methyl on 

rice blast   

During the 1980s, organophosphorus fungicides such as 

kitazin (EBP), kitazin P (IBP) and isoprothiolane (FJ-

one) with different chemical structures but similar mode 

of action were widely used (Katagiri and Uesugi, 1977; 

Zhang et al., 2009). The strobilurin-based (QoI; Quinone 

outside inhibitors) fungicides have been reported to be 

very effective in controlling rice blast in the USA 

(Groth, 2006). The specific target of QoI fungicides is 

the quinol-oxidising (Qo) site of the mitochondrial 

enzyme cytochrome b (Kim et al., 2003), as these 

chemicals block electron transport at the Qo site, thereby 

inhibiting fungal respiration (Bartlett et al., 2000). 

Azoxystrobin and kresoxim-methyl, belonging to QoI 

fungicides, are relatively new for controlling rice blast in 

China. The results of field experiments also suggested 

that both azoxystrobin and kresoxim-methyl at 187.5 

g.a.i. ha−1gave over 73% control efficacy in both sites, 

exhibiting excellent activity against rice blast. Taken 

together,azoxystrobin and kresoxim-methyl could be a 

good substitute for Carbendazim (MBC) or IBP for 

controlling rice blast in China, but should be carefully 

used as they were both at-risk (Chen et al., 2015). 

 

D. Methionine Biosynthesis 

 

Some plant amino acids such as cysteine, methionine, 

tryptophan, histidine and arginine are only present in 

trace amounts in the leaf apoplast and are likely not 

available for fungal nutrition ( Fernandes et al., 2014; 

Solomon et al., 2003). Infectious hyphae are expected to 

synthesize these amino acids from abundant apoplastic 

amino-acid such as glutamate or aspartate. Genetic 

studies in M.oryzae support this hypothesis for different 

amino-acids including methionine (Marie et al., 2015). 

 

E. Allele Mining Strategies for Blast Resistance  

Allele mining approaches have been intended to identify 

superior alleles of rice blast resistance genes such as Pita 

(Yang et al., 2007; Huang et al., 2008; Wang et al., 

2008; Ramkumar et al., 2010), Pikh (Ramkumar et al., 

2010), Pi54 (Kumari et al., 2013), and Pi-2 (Hittalmani 
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et al., 2013) from different cultivated rice varieties and 

wild species. The blast resistance genes Pi9, Pi2 and Piz-

ttend to be alleles from different rice resources while 

physically on the same gene locus on rice chromosome 

6, but their level of resistance spectra can be quite 

different (Zhou et al., 2006; Zhu et al., 2012). In general, 

there are two approaches available for allele mining 

and/or identification of sequence polymorphisms for a 

given gene in a naturally developing population: (i) 

modified TILLING (Targeting Induced Local Lesions in 

Genomes) (Comai et al., 2004), called Eco-TILLING 

and (ii): Re-sequencing (Huang et al., 2009) or 

sequencing based allele mining. 

 

F. Current advance methods for the identification 

of blast resistance genes in rice  

 

After the discovery of molecular markers, the selection 

of target traits becomes easier and many new cultivars 

have been developed accordingly. Nowadays, breeders 

are focusing on marker-assisted selection instead of 

using conventional breeding because it reduces the time 

for phenotypic selection, saves input costs, brings more 

reliability to select a desired trait with no influence of 

environmental factors (Koide et al., 2010). Many DNA 

markers are directly linked with Pi genes in rice 

including simple sequence repeats (SSRs), amplified 

fragment length polymorphisms (AFLPs), and cleaved 

amplified polymorphic sequences (CAPS), random 

amplified polymorphic DNAs (RAPDs), restriction 

fragment length polymorphisms (RFLPs), single-

nucleotide polymorphisms (SNPs) and small 

insertions/deletions (InDels). SSRs and CAPS are PCR-

based markers and require only a small amount of DNA 

for genotyping. These markers are very precise and cost 

effective and can be applied for the selection of plants 

containing blast resistance genes in rice at an early stage. 

Small In Dels and SNPs markers are found in abundance 

and dispersed widely in the rice genome (Yu et al., 

2002). On the basis of information on these markers, 

(Hayashi and Yoshida, 2006), developed nine PCR-

based markers linked with blast resistance in rice. These 

markers help in finding a gene within the desired target 

genome regions. Microsatellite markers, also called 

SSRs, are widely used for screening the blast-resistant 

and susceptible varieties. The difference between two 

varieties is based on polymorphism (Miah and rafii 

2013). With the advent of new technologies like marker-

assisted selection, molecular mapping, map-based 

cloning, marker-assisted backcrossing and allele mining, 

breeders have identified more than 100 Pi loci nd 350 

QTL in rice genome responsible for blast disease. These 

Pi genes and QTLs can be intro grassed into a blast 

susceptible cultivar through marker-assisted backcross 

breeding. These molecular techniques provide 

timesaving, environment friendly and labour-cost-saving 

ways to control blast disease. 
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